NPN Silicon RF Transistor

Preliminary data

- For highest gain low noise amplifier
at 1.8 GHz and $2 \mathrm{~mA} / 2 \mathrm{~V}$
Outstanding $G_{m s}=23 \mathrm{~dB}$
Noise Figure $F=0.95 \mathrm{~dB}$
- For oscillators up to 15 GHz
- Transition frequency $f_{T}=45 \mathrm{GHz}$
- Gold metallization for high reliability
- SIEGET ${ }^{\circledR} 45$ - Line
$45 \mathrm{GHz} f_{\top}$ - Line

$\xrightarrow{\text { direction of unreeling }}$

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Type	Marking	Pin Configuration				Package
BFP520F	APs	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	TSFP-4

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$	2.5	V
Collector-base voltage	V_{CBO}	10	
Emitter-base voltage	$V_{\text {EBO }}$	1	
Collector current	I_{C}	40	mA
Base current	I_{B}	4	
Total power dissipation $T_{\mathrm{S}} \leq 107^{\circ} \mathrm{C}$	$P_{\text {tot }}$	100	mW
Junction temperature			
Ambient temperature	T_{j}	${ }^{\circ} \mathrm{C}$	
Storage temperature	T_{A}	$-65 \ldots 150$	

Thermal Resistance

Junction - soldering point ${ }^{1}$)	$R_{\text {thJS }}$	≤ 430	K/W

[^0]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| | | min. | typ. | max. | |
| DC characteristics | $V_{(\mathrm{BR}) \mathrm{CEO}}$ | 2.5 | 3 | 3.5 | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CBO} | - | - | 200 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 35 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=1 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 70 | 110 | 200 | - |
| DC current gain | | | | | |
| $I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}$ | | | | | |

AC characteristics (verified by random sampling)

Transition frequency $I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, f=2 \mathrm{GHz}$	f_{\top}		45	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {cb }}$	-	0.07	-	pF
Collector-emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {ce }}$	-	0.25	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {eb }}$	-	0.31	-	
Noise figure $\begin{aligned} & I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \\ & f=1.8 \mathrm{GHz} \end{aligned}$	F	-	0.95	-	dB
Power gain, maximum stable ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}, Z_{\mathrm{L}}=Z_{\mathrm{Lopt}}, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	G_{ms}	-	23	-	
Insertion power gain $\begin{aligned} & I_{\mathrm{C}}=20 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	$\left\|S_{21}\right\|^{2}$	-	20.5	-	dB
Third order intercept point at output ${ }^{2}$) $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & I_{\mathrm{C}}=20 \mathrm{~mA} \end{aligned}$	$I P_{3}$	-	23.5	-	dBm
1 dB compression point 3) $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & I_{\mathrm{C}}=20 \mathrm{~mA} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	10.5	-	

$$
{ }^{1} G_{\mathrm{ms}}=\left|S_{21} / S_{12}\right|
$$

${ }^{2}$ IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz .
${ }^{3} \mathrm{DC}$ current at no input power

SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G. 6 Syntax) :

Transistor Chip Data

$\mathrm{IS}=$	15	aA	$\mathrm{BF}=$	235	-	$\mathrm{NF}=$	1	-
$\mathrm{VAF}=$	25	V	$\mathrm{IKF}=$	0.4	A	$\mathrm{ISE}=$	25	fA
$\mathrm{NE}=$	2	-	$\mathrm{BR}=$	1.5	-	$\mathrm{NR}=$	1	-
$\mathrm{VAR}=$	2	V	$\mathrm{IKR}=$	0.01	A	$\mathrm{ISC}=$	20	fA
$\mathrm{NC}=$	2	-	$\mathrm{RB}=$	11	Ω	$\mathrm{IRB}=$	-	A
$\mathrm{RBM}=$	7.5	Ω	$\mathrm{RE}=$	0.6		$\mathrm{RC}=$	7.6	Ω
$\mathrm{CJE}=$	235	fF	$\mathrm{VJE}=$	0.958	V	$\mathrm{MJE}=$	0.335	-
$\mathrm{TF}=$	1.7	ps	$\mathrm{XTF}=$	10	-	$\mathrm{VTF}=$	5	V
$\mathrm{ITF}=$	0.7	mA	$\mathrm{PTF}=$	50	deg	$\mathrm{CJC}=$	93	fF
$\mathrm{VJC}=$	0.661	V	$\mathrm{MJC}=$	0.236	-	$\mathrm{XCJC}=$	1	-
$\mathrm{TR}=$	50	ns	$\mathrm{CJS}=$	0	fF	$\mathrm{VJS}=$	0.75	V
$\mathrm{MJS}=$	0.333	-	$\mathrm{XTB}=$	-0.25	-	$\mathrm{EG}=$	1.11	eV
$\mathrm{XTI}=$	0.035	-	$\mathrm{FC}=$	0.5	-	TNOM	298	K

Package Equivalent Circuit:

	$L_{\text {BO }}=0.22$	nH	$L_{\text {BI }}=$	0.42	nH	
$c_{\text {cB }}$	$L_{\text {EO }}=0.28$	nH	$R_{\text {LBI }}=$	0.15	Ω	
	$L_{\text {CO }}=0.22$	nH	$L_{\text {EI }}=$	0.26	nH	
	$\mathrm{Kbo-eO}=0.10$	-	$R_{\text {LEI }}=$	0.11	Ω	
$C_{B S} \quad \mathrm{t}^{\prime} \quad C_{\text {cr }}$	$\mathrm{Kbo-co}=0.01$	-	$L_{\text {Cl }}=$	0.35	nH	
$\\|]^{\text {EI }}$	$\mathrm{KEO}-\mathrm{co}=0.11$	-	$R_{\text {LCI }}=$	0.13	Ω	
	$C_{\text {BE }}=34$	fF	$\mathrm{KCl}-\mathrm{El}=$	-0.05	-	
- ${ }^{\text {co }}$	$C_{\text {BC }}=2$	fF	$\mathrm{KbI}-\mathrm{Cl}=$	-0.08	-	
енног222	$C_{\text {CE }}=33$	fF	$\mathrm{Kbl}-\mathrm{El}=$	0.20	-	
	Valid up to 6GHz					

The TSFP-4 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection.
R_{LxI} are series resistors for the inductances $L_{\mathrm{x} \mid}$ and K_{xa}-yb are the coupling coefficients between the inductances $L_{x a}$ and $L_{y b}$. The referencepins for the coupled ports are $B, E, C, B^{\prime}, E^{\prime}, C^{\prime}$.
For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet:
http://www.infineon.com/silicondiscretes

[^0]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

